References
[1] Chunduri, S.K. & Schmela, M. 2019, “Heterojunction solar technology”, Taiyang News [http://taiyangnews.info/TaiyangNews_Report_ Heterojunction_Solar_Technology_2019_EN_ download_version2.pdf].
[2] Ballif, C. et al. 2019, “Solving all bottlenecks for silicon heterojunction technology”, Photovoltaics International, 42nd Edition, p. 85.
[3] Frank, G. & Köstlin, H. 1982, “Electrical properties and defect model of tin-doped indium oxide layers”, Appl. Phys. A, Vol. 27, No. 4, pp. 197–206 [https://doi. org/10.1007/BF00619080].
[4] Hamberg, I. & Granqvist, C.G. 1986, “Evaporated Sn»doped In2O3 films: Basic optical properties and applications to energy»efficient windows”, J. Appl. Phys., Vol. 60, No. 11, pp. R123–R160 [https://doi. org/10.1063/1.337534].
[5] Balestrieri, M. et al. 2011, “Characterization and optimization of indium tin oxide films for heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 95, No. 8, pp. 2390–2399 [https://doi.org/10.1016/j.solmat.2011.04.012].
[6] Koida, T. & Kondo, M. 2007, “Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach”, J. Appl. Phys., Vol. 101, No. 6, p. 063713 [https://doi. org/10.1063/1.2712161].
[7] Kobayashi, E., Watabe, Y. & Yamamoto, T. 2015, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide”, Appl. Phys. Expr., Vol. 8, No. 1, p. 015505 [https://doi. org/10.7567/APEX.8.015505].
[8] Macco, B. et al. 2014, “High mobility In2O3:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization”, physica status solidi (RRL), Vol. 8, No. 12, pp. 987–990 [https://doi.org/10.1002/pssr.201409426].
[9] Erfurt, D. et al. 2019, “Improved electrical properties of pulsed DC magnetron sputtered hydrogen doped indium oxide after annealing in air”, Mater. Sci. Semicon. Proc., Vol. 89, pp. 170–175 [https://doi.org/10.1016/j.mssp.2018.09.012].
[10] Yu, J. et al. 2016, “Tungsten doped indium oxide film: Ready for bifacial copper metallization of silicon heterojunction solar cell”, Sol. Energy Mater. Sol. Cells, Vol. 144, pp. 359–363 [https://doi. org/10.1016/j.solmat.2015.09.033].
[11] Newhouse, P.F. et al. 2005, “High electron mobility W-doped In2O3 thin films by pulsed laser deposition”, Appl. Phys. Lett., Vol. 87, No. 11, p. 112108 [https://doi.org/10.1063/1.2048829].
[12] Asikainen, T., Ritala, M. & Leskelä, M. 2003, “Atomic layer deposition growth of zirconium doped In2O3 films”, Thin Solid Films, Vol. 440, No. 1, pp. 152–154 [https://doi.org/10.1016/S0040- 6090(03)00822-8].
[13] Morales-Masis, M. et al. 2018, “Highly conductive and broadband transparent Zr-doped In2O3 as front electrode for solar cells”, IEEE J. Photovolt., pp. 1–6 [https://doi.org/10.1109/ JPHOTOV.2018.2851306].
[14] Morales‐Masis, M. et al. 2017, “Transparent electrodes for efficient optoelectronics”, Adv. Electron. Mater., Vol. 3, No. 5, p. 1600529 [https://doi. org/10.1002/aelm.201600529].
[15] Delahoy, A.E. & Guo, S.Y. 2005, “Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering”, J. Vac. Sci. Technol. A, Vol. 23, No. 4, pp. 1215–1220 [https://doi.org/10.1116/1.1894423].
[16] van Hest, M.F.A.M. et al. 2005, “Titaniumdoped indium oxide: A high-mobility transparent conductor”, Appl. Phys. Lett., Vol. 87, No. 3, p. 032111 [https://doi.org/10.1063/1.1995957].
[17] Meng, Y. et al. 2001, “A new transparent conductive thin film In2O3:Mo”, Thin Solid Films, Vol. 394, No. 1–2, pp. 218–222 [https://doi.org/10.1016/ S0040-6090(01)01142-7].
[18] Yoshida, Y. et al., “Development of radiofrequency magnetron sputtered indium molybdenum oxide”, J. Vac. Sci. Technol. A, Vol. 21, No. 4, pp. 1092–1097 [https://doi.org/10.1116/1.1586281].
[19] Warmsingh, C. et al. 2004, “High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition”, J. Appl. Phys., Vol. 95, No. 7, pp. 3831–3833 [https://doi.org/10.1063/1.1646468].
[20] Ruske, F. et al. 2010, “Improved electrical transport in Al-doped zinc oxide by thermal treatment”, J. Appl. Phys., Vol. 107, No. 1, p. 013708 [https://doi.org/10.1063/1.3269721].
[21] Hüpkes, J. et al. 2014, “Damp heat stable doped zinc oxide films”, Thin Solid Films, Vol. 555, pp. 48–52 [https://doi.org/10.1016/j.tsf.2013.08.011].
[22] Greiner, D. et al. 2011, “Damp heat stability of Al-doped zinc oxide films on smooth and rough substrates”, Thin Solid Films, Vol. 520, No. 4, pp. 1285– 1290 [https://doi.org/10.1016/j.tsf.2011.04.190].
[23] Morales-Vilches, A.B. et al. 2018, “ITO-free silicon heterojunction solar cells with ZnO:Al/SiO2 front electrodes reaching a conversion efficiency of 23%”, IEEE J. Photovolt., Vol. 9, No. 1, pp. 1–6 [https:// doi.org/10.1109/JPHOTOV.2018.2873307].
[24] Bivour, M. et al. 2014, “Silicon heterojunction rear emitter solar cells: Less restrictions on the optoelectrical properties of front side TCOs”, Sol. Energy Mater. Sol. Cells, Vol. 122, pp. 120–129 [https:// doi.org/10.1016/j.solmat.2013.11.029].
[25] Basset, L. et al. 2018, “Series resistance breakdown of silicon heterojunction solar cells produced on CEA-INES pilot line”, Proc. 35th EU PVSEC, Brussels, Belgium, pp. 721–724 [https://doi. org/10.4229/35thEUPVSEC20182018-2DV.3.21].
[26] Ling, Z.P. et al. 2015, “Three-dimensional numerical analysis of hybrid heterojunction silicon wafer solar cells with heterojunction rear point contacts”, AIP Adv., Vol. 5, No. 7, p. 077124 [https:// doi.org/10.1063/1.4926809].
[27] Cruz, A. et al. 2019, “Effect of front TCO on the performance of rear-junction silicon heterojunction solar cells: Insights from simulations and experiments”, Sol. Energy Mater. Sol. Cells, Vol. 195, pp. 339–345 [https://doi.org/10.1016/j. solmat.2019.01.047].
[28] Wang, E.-C. et al. 2019, “A simple method with analytical model to extract heterojunction solar cell series resistance components and to extract the A-Si:H(i/p) to transparent conductive oxide contact resistivity”, AIP Conf. Proc., Vol. 2147, No. 1, p. 040022 [https://doi.org/10.1063/1.5123849].
[29] Cruz, A. et al. 2019, “Influence of silicon layers on the growth of ITO and AZO in silicon heterojunction solar cells”, IEEE J. Photovolt., pp. 1–7 [https://doi.org/10.1109/JPHOTOV.2019.2957665].
[30] Muñoz, D. & Roux, D. 2019, “The race for high efficiency in production: Why heterojunction is now ready for market”, Proc. 36th EU PVSEC, Marseille, France, pp. 1–20.
[31] Strahm, B. et al. 2019, “‘HJT 2.0’ performance improvements and cost benefits for silicon heterojunction cell production”, Proc. 36th EU PVSEC, Marseille, France, pp. 300–303 [https://doi. org/10.4229/EUPVSEC20192019-2EO.1.3].
[32] Zhang, D. et al. 2013, “Design and fabricationof a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 117, pp. 132–138 [https://doi. org/10.1016/j.solmat.2013.05.044].
[33] Geissbühler, J. et al. 2014, “Silicon heterojunction solar cells with copper-plated grid electrodes: Status and comparison with silver thick-film techniques”, IEEE J. Photovolt., Vol. 4, No. 4, pp. 1055–1062 [https://doi.org/10.1109/ JPHOTOV.2014.2321663].
[34] Herasimenka, S.Y. et al. 2016, “ITO/SiOx:H stacks for silicon heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 158, Part 1, pp. 98–101 [https:// doi.org/10.1016/j.solmat.2016.05.024].
[35] Santbergen, R. 2016, “Manual for solar cell optical simulation software: GENPRO4”, Photovoltaic Materials and Devices, Delft University of Technology.
[36] Haschke, J. et al. 2020, “Lateral transport in silicon solar cells”, J. Appl. Phys., Vol. 127 [https://doi. org/10.1063/1.5139416].
[37] Bivour, M. et al. 2012, “Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 106, pp. 11–16 [https://doi. org/10.1016/j.solmat.2012.06.036].
[38] Procel, P. et al. 2018, “Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 186, pp. 66–77 [https://doi.org/10.1016/j.solmat.2018.06.021].
[39] Luderer, C. et al. 2019, “Contact resistivity of the TCO/a-Si:H/c-Si heterojunction”, Proc. 36th EU PVSEC, Marseille, France, pp. 538–540 [https://doi. org/10.4229/EUPVSEC20192019-2DV.1.48].
[40] Messmer, C. et al. 2019, “Influence of interfacial oxides at TCO/doped Si thin film contacts on the charge carrier transport of passivating contacts”, IEEE J. Photovolt., pp. 1–8 [https://doi.org/10.1109/ JPHOTOV.2019.2957672].
[41] Cox, R.H. & Strack, H. 1967, “Ohmic contacts for GaAs devices”, Solid-State Electron., Vol. 10, No. 12, pp. 1213–1218 [https://doi.org/10.1016/0038- 1101(67)90063-9].
[42] Fellmeth, T., Clement, F. & Biro, D. 2014, “Analytical modeling of industrial-related silicon solar cells”, IEEE J. Photovolt., Vol. 4, No. 1, pp. 504–513 [https://doi.org/10.1109/JPHOTOV.2013.2281105].